
Design Approach

Motivation

Design Requirements

Intended Users and Use Cases

Design Approach

Technical Details

sdmay21-23 : Grid AI
Team Members: Justin Merkel, Abir Mojumder, Karthik Prakash, Abhilash Tripathy, Patrick Wenzel
Advisor/Client: Gelli Ravikumar

Problem Statement :
Power Grids are complex and critical infrastructure which
leaves them vulnerable to instability and attack.

Solution :
Develop a web application that implements a Machine
Learning model to analyze power grid data and detect
anomalies in power usage.

Functional Requirements
● Machine learning algorithms

○ Predict transformer output in kWh
○ Classify potential anomalies within grid

● Front-end interface for data visualization
○ Graph-based visualization
○ Geographical representation of power grid
○ Charts for history and predictions for each node
○ Tabular data showing anomaly status for every node

● Back-end
○ Handle all data communication and processing
○ Provide real-time data to front-end

Non-functional Requirements

● Power Grid Operator

○ Real-time alerts for power anomalies.
○ Remote access to a variety of transformer data.

● Data Analyst

○ Power output metrics and data can be visualized quickly.
○ Insights from a deep neural net provide more context to

power related activity.

● Design Approach: TODOs

● Concept sketch

● Block diagram

● Present main functional modules, and how they together

achieve the overall system functionality

● Security Concerns and Countermeasures (Physical and/or

Cyberphysical)

● Requirements: TODOS

● Functional requirements (Backend)

● Non-functional requirements

● Engineering Constraints

● Operating environment

● Relevant Standards

● Machine Learning
○ Two types of models in Tensorflow
○ One deep neural network regression to predict the future

kWh output of a grid node.
○ One deep neural Logistic regression model to classify the

anomalies.
● Front-end

○ React - Javascript/JSX; renders the web based
application

○ D3 Graph - A JS library to create interactive graphs (Grid
Visualization)

○ Google Line Chart, Material-UI Table - Displays node data
● Back-end

○ Databases - Neo4j & MySQL store necessary transformer
information and time-series data

○ REST API - Developed with Flask framework provides
interface to database

Possible ML pictures

Neural Net layers
and softmax final
layer

○ Clear documentation to allow future teams
to improve the project.

○ Modular coding for maintainability.
○ Machine learning models are generalized.

Constraints
○ Limited amount of real-life power grid data
○ Use Neo4j style database that client is

familiar with

● Machine Learning
○ Tested accuracy using data set aside from training data
○ 96.27% anomaly prediction
○ 1.25 kWh mean error

● Front-end
○ Tested function accuracy by comparing their outputs with

what the actual data is before putting into our application
○ Verified our visualizations display the correct data
○ Made sure there are no bugs
○ Checked with our client that our interface is acceptable

● Back-end
○ Tested endpoint function accuracy using Postman to send

HTTP requests
○ Verified the Docker containers could send and receive

requests and received the correct data

Concept Sketch

Modules/Technical Detail Testing/Testing Results

Block Diagram

Standards
○ IEEE/ISO/IEC 12207-2017: Software life

cycle processes

Operating Environment
○ Iowa State University’s Cyber- Physical

Testbed (PowerCyber)

Security
○ Concern: Databases susceptible to

manipulation from outside party
○ Countermeasure: Database authentication

and mindful endpoint configuration

